منابع مشابه
Diameter of 4-colourable graphs
We prove that for every connected 4-colourable graph G of order n and minimum degree δ ≥ 1, diam(G) ≤ 5n 2δ − 1. This is a first step toward proving a conjecture of Erdős, Pach, Pollack and Tuza [4] from 1989.
متن کاملOn Diameter of Line Graphs
The diameter of a connected graph $G$, denoted by $diam(G)$, is the maximum distance between any pair of vertices of $G$. Let $L(G)$ be the line graph of $G$. We establish necessary and sufficient conditions under which for a given integer $k geq 2$, $diam(L(G)) leq k$.
متن کاملA Note on Uniquely H-colourable Graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملMaximal cubic graphs with diameter 4
We prove that there is no cubic graph with diameter 4 on 40 vertices. This implies that the maximal number of vertices of a (3,4)-graph is 38. ? 2000 Elsevier Science B.V. All rights reserved.
متن کاملThe existence of uniquely -G colourable graphs
Given graphs F and G and a nonnegative integer k, a function n : V(F) ~ {1 . . . . . k} is a G k-colouring of F if no induced copy of G is monochromatic; F is G k-chromatic if F has a G k-colouring but no G (k 1)-colouring. Further, we say F is uniquely G k-colourable if F is G k-chromatic and, up to a permutation of colours, it has only one G k-colouring. Such notions are extensions of the wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2009
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2008.09.005